
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

LEAST SQUARES SOLUTIONS TN STATISTICAL ORBIT
DETERMINATION USING SINGULAR VALUE

DECOMPOSITION

by

Patrick M. Marshall

June 1999

Thesis Advisor:
Thesis Co-Advisor:

Donald A. Danielson
David Canright

Approved for public release; distribution is unlimited.

^«fctZJ*
msp^CTBD. 19990915 067

REPORT DOCUMENTATION PAGE Form Approved
OMBNo. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
June 1999

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE LEAST SQUARES SOLUTIONS IN STATISTICAL ORBIT
DETERMINATION USING SINGULAR VALUE DECOMPOSITION
6. AUTHOR(S)
Marshall, Patrick M.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department
of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis is a partial analysis of the Naval Space Command statistical orbit determination algorithms. Through a

process called Differential Correction, data from space surveillance radar observation stations is synthesized with previously
accumulated element sets to maintain accurate orbital object position information. Differential Correction is a nonlinear least
squares process employing statistical techniques to minimize the residual measurement error thereby increasing relative
position information accuracy. This study focuses specifically on the algorithmic methods of solution to the systems of
normal equations generated by the Differential Correction process. A comparison and analysis of the present Naval Space
Command method and the singular value decomposition method is presented. Algorithmic constructions are presented for
both methods and problematic areas are highlighted. The principal focus herein is to demonstrate the benefit of singular
value decomposition when attempting to solve systems of equations whose coefficient matrices are dense and nearly singular.
These results generalize to commonly employed normal equation solution algorithms and are intended for further study and
possible incorporation by Naval Space Command as part of future modernization plans.

14. SUBJECT TERMS

Least Squares, Nonlinear Least Squares, Normal Equations, Singular Value Decomposition, Gaussian
Elimination, Differential Correction

15. NUMBER OF
PAGES

62

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFI-CATION
OF ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-9)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

LEAST SQUARES SOLUTIONS IN STATISTICAL ORBIT
DETERMINATION USING SINGULAR VALUE DECOMPOSITION

Patrick M. Marshall
Captain, United States Army

B.S., Augusta State University, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
June 1999

Author:

Approved by:

Patrick M. Marshall

J^'JW^TK
Donald A. Danielson, Thesis Advisor

lQ frv-t-^i MW\/>^(AO

David Canright, Thesis Co-Advisor

^*W^v-t

Michael Morgan, Chairman
Department of Mathematics

111

IV

ABSTRACT

This thesis is a partial analysis of the Naval Space Command statistical

orbit determination algorithms. Through a process called Differential Correction,

data from space surveillance radar observation stations is synthesized with

previously accumulated element sets to maintain accurate orbital object position

information. Differential Correction is a nonlinear least squares process employing

statistical techniques to minimize the residual measurement error thereby

increasing relative position information accuracy. This study focuses specifically

on the algorithmic methods of solution to the systems of normal equations

generated by the Differential Correction process. A comparison and analysis of the

present Naval Space Command method and the singular value decomposition

method is presented. Algorithmic constructions are presented for both methods

and problematic areas are highlighted. The principal focus herein is to demonstrate

the benefit of singular value decomposition when attempting to solve systems of

equations whose coefficient matrices are dense and nearly singular. These results

generalize to commonly employed normal equation solution algorithms and are

intended for further study and possible incorporation by Naval Space Command as

part of future modernization plans

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

H. BACKGROUND 3

A. STATISTICAL ORBIT DETERMINATION 3

B. DERIVATION OF THE NORMAL EQUATIONS 3

C. GENERAL LINEAR LEAST SQUARES 3

D. LEAST SQUARES APPLIED TO ORBITAL MECHANICS 6

m. NORMAL EQUATION SOLUTION METHODS 11

A. GENERAL 11

B. NAVSPACECOM GAUSS-JORDAN ELIMINATION 12

C. SINGULAR VALUE DECOMPOSITION 16

IV. COMPARISON OF METHODS 27

A. GENERAL 27

B. SENSITIVITY ANALYSIS 28

C. ERROR ANALYSIS 32

D. COMPUTATIONAL EFFICIENCY 35

V. CONCLUSIONS 37

A. SUMMARY OF FINDINGS 37

B. RECOMMENDATION 38

C. CONCLUSION 38

APPENDKA: TEST MATRIX TYPE 1 41

APPENDKB: TEST MATRTX TYPE 2 45

LIST OF REFERENCES 49

INITIAL DISTRIBUTION LIST 51

Vll

VUl

ACKNOWLEDGEMENTS

Foremost I thank my wife Pamela for her constant encouragement and

endless support of my professional life, my children for their continuous patience

with the demands of my career, and my mother whose life-long support has

inspired me thus far.

A special gratitude I give to Professor Don Danielson for his complete

inspiration through endless hours of scientific education and philosophical

contemplation whose constant encouragement and complete freedom empowered

my pursuit, my education.

I also thank Professor David Canright for sharing his exceptional eye for

detail, providing absolutely clairvoyant explanation of the most tedious algorithm,

and most of all for his friendship and steadfastness in helping me complete the task

at hand.

Additionally, I would like to thank Professors Bill Gragg, Dick Franke,

Carlos Borges, Chris Frenzen, and Maury Weir for always selflessly lending their

extra time.

And finally to Jhoie Pasadilla, always there in all things small never failing

to smile through it all - Thank you.

IX

I. INTRODUCTION

The Naval Space Command maintains a database of element sets for more than

9,000 objects. Through a process called Differential Correction, data from space

surveillance observation stations is synthesized with previously accumulated element sets.

Differential Correction is a nonlinear least squares process employing statistical techniques

which provide for accurate orbit state estimation. Radar measurements of an object's

motion are collected by dispersed observation stations and passed to NAVSPACECOM

for central processing. NAVSPACECOM receives daily approximately 270,000 new

observation sets and uses them to update as many as 18,000 element sets.

NAVSPACECOM performance reports indicate that approximately 98.5% of the element

sets get updated without manual intervention by their computer software called

AUTODC. The remaining 1.5% must be manually analyzed. Differential correction is a

highly complex step-wise process that entails more than 16 separate mathematical

computations. Even with automated support, this constitutes a significant work load.

Numerical linear algebra is at the core of the differential correction process. In

general, data is accumulated, normal equations are formed, and numerical linear algebra

routines are called to solve the matrix system of normal equations. The method of normal

equation solution and its associated algorithms are the focus of this analysis. The purpose

of this thesis is to demonstrate the benefits of using singular value decomposition when

obtaining least squares solution to systems of normal equations.

II. BACKGROUND

A. STATISTICAL ORBIT DETERMINATION

The NAVSPACECOM differential correction method is a sequential batch

nonlinear least squares statistical process. This is an iterative method which refines the

stored orbital element sets by applying state adjustments obtained from differential

correction of the current orbital observations. These state updates are tested for fit in the

least squares sense and if acceptable applied to the previous nominal state then stored as

the new nominal orbital element set. The fundamental mathematical steps are now

outlined; for further details,, see Vallado [1] and Danielson and Canright [2].

B. DERIVATION OF THE NORMAL EQUATIONS

These descriptions have been simplified and are only intended to provide sufficient

background for the purpose of detailing the algorithmic composition and term-wise

structure of the normal equation system. For a very detailed description of the entire set

of NAVSPACECOM procedures refer to Danielson and Canright [2].

C. GENERAL LINEAR LEAST SQUARES

We begin the process by noting that our goal is to solve the generally inconsistent

system of equations whose matrix representation is

Ax =b (1)

by minimizing the residual, r, where

r = b-Ax (2)

The method of least squares can be applied to solve such linear systems. Typically

these systems are highly overdetermined. They have many more rows (m), or equations

than columns (n) or unknowns and as such are inconsistent. From elementary linear

algebra [3], we know that the range of the matrix R(A) is the orthogonal complement of

the null space of its transpose N(AT). As such, the multiplication AT always produces a

consistent set of n equations and n unknowns. The only issue with this method however

arises when some set of the variables from the original linear system are correlated. If this

happens, the newly formed consistent system will fail to have a unique solution.

The general method proceeds as follows. Left multiplication of equation (1) yields,

ATAx = ATb (3)

Equation (2) implies

Arr = AT(b-Ax) = 0 (4)

Equations from the original system may be weighted by applying a diagonal weighting

matrix. This expands as

ATWAx = ATWb (5)

Residuals from the new, weighted system satisfy

4

ATWr = ATW(b - Ax) = 0 (6)

Provided ArWA is nonsingular, we obtain the solution as,

x =(ArWA)-1ArWb (7)

This result commonly referred to as the normal equations forms the basis of the least

squares solution process.

Differential Correction employs sequential batch techniques when acquiring the

current state solution from different observational data input sets. This method

synthesizes the separate batch solutions as follows.

Given the systems for two batches as

A,x = bj and A2x = b2

In order for the single solution to be meaningful, these batch systems must be

simultaneously solved. This is accomplished by forming the weighted least squares system

as follows.

[(A'WAX+^WA^]! = (ArWb), +(ArWb)2

The process can be simplified slightly by reusing the solution from Xj

[(ArWAX+(ArWA)2]x = (A'WAXxj+CA'Wb^

When acquiring the weighted solution simultaneously, different weights may be applied to

the different sets of equations either by reducing Wi or by scaling (AT WA\ . Notice here

that the batching process does not significantly alter the basic least squares problem nor

does it alter the complication arising when some portion of the left hand side constitutes a

singular matrix.

D LEAST SQUARES APPLIED TO OBITAL MECHANICS

The reader is directed to Danielson and Canright [2] for extensive mathematical

description and existing code documentation from which the following outline extract was

taken.

(i) Assume an initial nominal state

X nominal

(ii) Compute the values of the observed parameters Yc at N times corresponding to the

observations YQ (each observation set contains at a maximum 6 numbers)

Y =
VA p;]

\ .Y,= *

kJ i kJ
, where/ = l,...N

(iii) Compute the residuals or "O-Cs" (70-7c), (observed minus calculated

parameters). Arrange these as the 6Nx 1 column matrix

b =

(iv) Calculate the partial derivatives

dYc_ 6YC a(r,v)

dx a(r,v) ex

dX} dXs

dr, dr,

dY, ^ dYc' dX, dXs

dr, dr, drK to, &j
dvK

drK drK

. . . » . . dX, dX%
* " * •

dv, dv,
dY« &H c6 &« ^ c6 dXx dXs

3ri dr, drK dv, OV, 8vK_ dv,

dXx

dvK

dv,

dxz

dvK

ÖTj dr1

fflSr, dX%

at each observation time and arrange the coordinates of the position and velocity vectors,

(ri,rj,rK) and (vj,vj,vK), into the following 6Nx8 matrix.

A =

dY^

as:,
7

dXx

\—\A
fdY >

A

(v) Form the normal equations:

y^A
fdY„

\dX*A

ATWAx = ATWb

Where W denotes a 6Nx6N weighting matrix.

Finally

x =

x.

are the differential corrections. Note that ATWA is an 8x8 matrix, and that ATWb is an

8x1 matrix.

(vi) Solve the normal equations:

x =(ArWA)-'ArWb

(vii) Update the elements:

X-new — X>old + X

(For the first iteration, X0u is Xn0minai.)

(viii) Lastly, apply the following RMS test to determine if iterations should continue.

RMS, - RMSM

RMS,
<£

where, RMSi = -ipir5X = V"w5"

Generally, in nonlinear least squares our goal is to minimize the sum of the

residuals squared. It is therefore appropriate to use some measure of this as stopping

8

criteria. In the differential correction process, simply cease iteration when the RMS

"stops" changing. Since all of the necessary input to the RMS equations has been

accumulated this proves an efficient method as well.

10

III. NORMAL EQUATION SOLUTION METHODS

A. GENERAL

At present the Naval Space Command, Differential Correction process relies on

Gauss-Jordan elimination with full pivoting for solution to the normal equations. The

subroutines responsible for processing the complete normal equation solutions are named

AMA06, AMA04 and AMA03. After the appropriate Differential Correction algorithms

have formed the standard system of normal equations as described in the previous section,

AMA06 is called to read in the initial array entries, form the matrix E = ArWA, duplicate

it and begin preconditioning processes designed to identify singular matrices. Following

sufficient preconditioning, AMA06 then calls AMA04 which in turn computes E"1.

Finally, AMA03 is called to apply Gauss-Jordan elimination and solve,

x = (ATWA)_1 ArWb. The 8x8 matrix ArWA is input as E and the 8xlmatrix ArWb

is input as G.

The following section describes specific processes and algorithms used to solve the

normal equations with Gaussian elimination and with Singular Value Decomposition,

SVD. Each process is initiated with the previous normal equation derivation. The present

NAVSPACECOM differential correction process uses the Gauss Jordan elimination

method with full pivoting.

11

Focusing back on step (vi) of the least squares orbital mechanics process, solution

of the normal equations, we now compare the present NAVSPACECOM method with

Singular Value Decomposition method. The refined problem is now, how to acquire the

best approximation at each step of the nonlinear approximation process so as to ensure

maximum efficiency of the iterative routine while minimizing the associated rounding

error in the next iterate?

B. NAVSPACECOM GAUSS-JORDAN ELIMINATION

The Naval Space Command uses Gauss-Jordan elimination with full pivoting for

solution to the system of normal equations. Their algorithm is very similar to the one in

the book, Numerical Recipes, by Press, et al. [7].

Typical Gauss-Jordan with Full Pivoting

Every Gauss-Jordan step is a left multiplication by an elementary matrix, [3]. An

overview of the general method of Gauss-Jordan elimination is as follows:

(i) Augment the right hand side with the nxn identity matrix.

(ii) Perform elementary operations on the augmented, nx2n system until the

nxn identity matrix is reformed in the first n columns of the matrix

(iii) Recall the last n columns of the augmented matrix as the inverse.

12

This method is usually done in place; that is, the actual augmentation is never

performed. The algorithm simply replaces the original input matrix, in place, with its

inverse. For this reason, if there is ever a need to recall the original data, a copy of the

original matrix must be made on input.

Full pivoting is the process by which rows and columns of the original matrix are

reordered so that the element largest in magnitude is moved to the upper left corner of the

matrix. Then, each successive pivot row in maneuvered similarly. Why do this? In the

computational process, the subsequent rows below the pivot in question are being reduced

to zero by dividing through by a scaled multiple ofthat pivot. If the process is not begun

in this manner, that is to say if the element below the pivot is greater in magnitude then the

pivot, the pivot must be scaled by increasing its magnitude. The scaling factor is the

element being zeroed out divided by the pivot, and if the pivot is small enough this

approaches division by zero. In finite precision arithmetic, this can lead to a divide by zero

condition. If the difference in magnitude of the pivot is sufficiently less than the element

being zeroed out, the computer can evaluate the expression and return "Not-A-Number".

Even if the division by zero extreme condition does not occur, scaling the matrix through

by these sufficiently small quantities inflates the rounding error. How does pivoting

protect against this? By always scaling so that each successive pivot is the next largest in

magnitude, the previous process of dividing the subdiagonal elements, results in scaling

the pivot row by decreasing its magnitude. This has the effect of moving the division

operations away form the 1/zero condition and deflates the magnitude of rounding error to

the minimum possible given the actual element-wise composition of the matrix.

13

Partial pivoting is a similar process that allows only row exchanges. While this

may appear to be a sound concept with less computational overhead, in practice, matrix

elements, not directly below (in some other column) the pivot being operated on, may still

be sufficiently greater in value than subsequently available pivot choices. If this occurs,

the solution is again driven toward a divide by zero condition. By manipulating both rows

and columns, as in full pivoting, we reduce the likelihood of the divide by zero condition

to the greatest extent possible.

When employing the full pivoting routines, the general Gauss-Jordan process is

augmented by left and right permutation matrices which track the pivot maneuvers. The

corresponding information is stored as an array and applied during the back solve process

thereby ensuring correct association of the coefficients and variables from the original

system of equations.

It must be noted that the previous pivoting processes only reduce the likelihood of

algorithm failure. They do not prevent it. In the event of near singular, noninvertible

conditions, the Gauss-Jordan full pivoting routine has no mechanism to correct or

compensate. This is an inherent critical deficiency. Failure due to nearly singular input

matrices routinely occurs when processing least squares systems that are derived from

closely sampled data.

14

Unique features of NAVSPACECOM Gauss-Jordan

The following system processes are extracted as reported in the code

documentation research of Danielson and Canright, [2]. The matrix representation of the

system of normal equations is loaded as the input matrix E. The input matrix is symmetric

positive semi-definite by its inherent construction. As such, only values on and to the right

of the diagonal are read as input. The below diagonal elements are copied from their

respective symmetric counterparts. At this point a preconditioning routine, AMA06, is

called. It samples the matrix to determine if any off-diagonal element of E is too large

relative to its corresponding diagonal elements. AMA06 tests each Eg > (SJNGjEjjEjj,

where SING is a parameter value. If any E? violates this inequality then that row (for

even-number calls) or column (for odd-number calls) is "inactivated". The threshold

SING is initially set to near one. Then, if the active matrix is singular, the threshold SING

is lowered by 10% (attempting to inactivate more rows/columns) and the solution is tried

again. At this point, a saved copy of the original matrix must be reloaded. The immediate

effect of this process is to eliminate divide by zero conditions when pivot elements are

very small. Eventually, either a solution is found, or the whole matrix is made inactive

(flagged by a return value SING=0), or the threshold gets too small (SING < 0.01)

indicating that the entire system is singular. In the event that no matrix remains, an error

condition is returned and all further processing of this set of observational data ceases. A

tally of these failures is presented as an output report in the batch run statistics.

15

There is a fundamental problem with this preconditioning methodology. Under no

circumstances are the root causes of the perceived singularities dealt with. Further, in

terms of computational effort, the computer is permitted to cycle excessively without

sufficient intermediate checks to determine if the initial perceived singular conditions are

removable.

In summary, Gaussian elimination is generally the most computationally efficient

numerical method available; however, it suffers'from numerical instability under certain

conditions, which are detailed in Chapter IV, Comparison of Methods. Unfortunately,

these very same conditions generally arise in systems of normal equations. As noted

earlier, whenever correlation of variables from the original system equations occurs, the

resulting matrix Ar A represents a consistent set of equations with redundant solutions.

These redundant solutions drive the matrix toward a singular condition.

C. SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition, SVD of an arbitrary mxn matrix is the

factorization of A into USVr, where U and V are orthogonal matrices and Eis the

rectangular mxn matrix whose first r rows form a square, diagonal submatrix with

elements ax ■ • -ar , i.e., the singular elements of A with the remainder of Z being zeros.

The process proceeds generally as follows (See [6]):

(i) Reduce the general input matrix A to bidiagonal form B with orthogonal

matrices U and V where A = U BVr. B is nonzero only on its main
11 11

16

diagonal and first super diagonal. This is accomplished with Householder

transformations in the actual algorithms.

T (ii) Find the SVD of B, B = U EV , where Z is the diagonal matrix of singular
2 2

values and U and V are orthogonal matrices whose columns are the
2 2

respective left and right singular vectors. The Gram-Schmidt process

produces this result.

(iii) Combine these decompositions to form A = (UU)E(VV)r. The

columns of U = (UU)and V = (VV)are the respective left and right

singular vectors of A.

Step (i) reduces the A matrix to bidiagonal form by applying Householder

transformations on both left and right sides. The symmetry of the original matrix is

preserved throughout. Step (ii) employs the Gram-Schmidt process to orthogonalize the

columns of U and V . Step (iii) reforms the matrix factors. Specific algorithms for

these subordinate functions are detailed in Golub [5] and Demmel [6]. The SVD

algorithm simply incorporates them. Another extremely useful secondary benefit of the

SVD is provided by its fundamental structure. That is the factor matrices U and V have a

very special structure. They are orthogonal. Where, A = UEVT , the columns of U are

the eigenvectors of AAT and the columns of V are the eigenvectors of ATA , Strang,

[3]. Further, orthogonal matrices have the nicety that U T U = UU T = I. This infers

17

directly that when solving the system of normal equations,

Ax = b as U E V T x = b the respective transposes, UT and V, are left

multiplied yielding x = V2+UTb. Interestingly enough, no actual inverse matrices have to

be calculated. Further, the transpose ofU and V can be done in place. The real benefit is

the complete absence of rounding error when taking the transpose of a matrix.

The problem with the Gauss-Jordan method is the requirement for the columns of

A to be independent. As described in detail in the previous section, when ill-conditioned

matrices are input, a great deal of computational effort is required in preconditioning the

matrix. Without this preconditioning, even nonsingular but very ill-conditioned matrices

may cause algorithms to break down. The computer simply perceives the matrix to be

singular to its level of machine precision.

The key to SVD's computational stability lies in its orthogonality. Matrix rank

problems arise frequently in computer arithmetic. Determining the rank of an ill-

conditioned matrix can be challenging in the presence of roundoff error and noisy data.

The SVD allows for practical dealing with numerical rank deficiency

The following theorem is taken from Golub, [5]. See [5] for a detailed proof. The

theorem provides the detail necessary for determining how "close" the given A matrix is to

one of lower rank. The 2-norm here is the matrix derivation of the vector Euclidean norm

[3] defined as follows.

least upper bound (A)=max
"'AxT

v Fll j
where |IA| < least upper bound(A)^

18

Theorem

Let the SVD of A eRmxn be given. Ifk<r = rank(A), and

i = \

then,

mm A-B =
II II2

A_AJ ~<Tk + \ *ll2

rank(B) = k

This striking result offers a method of computation using stored values which

specifically reveal the magnitude of the degenerate numerically singular condition of the A

matrix. The details of this theorem indicate that the smallest singular value of A is the 2-

norm distance of A to the set of all rank deficient matrices. Iteration is no longer required

to determine the degree of singularity.

Now, let's look at an example of how to make the most out of ill-conditioned least

squares systems with the SVD. See Strang [3] for more on this. In general, the least

squares problem has one very stringent requirement, the columns of the A matrix must be

independent or the rank of A must be equal to n, the number of columns. This is often

referred to as full rank. If not, A is not invertible then Ax = b can not determine x. As

described earlier, any vector from the null space of A can be added to x. Now let's

examine what happens. There are two possible situations, either the rows of A may be

dependent or the columns of A may be dependent. The first situation implies the system

of equations may have no solution and the second situation implies that any solution is not

unique. The dependent column case makes this a particularly difficult yet interesting

19

problem. As discussed earlier, when we have dependent rows the solution we seek may

be outside the column space of A. Our course of action now becomes simply project b

onto the column space of A. Now the greater challenge. After making that projection we

find A has dependent columns and the solution is not unique. At this point, we must now

employ the criteria for selecting the optimal solution and choose the one with minimum

length.

Consider the following example:

A =

where A is diagonal with dependent rows and columns.

Here we see the columns all end in 0. As per case (i), the closest vector to

b = (blyb2,b3,b4) is p = (&!,&,,0,0)the projection onto the column space of A. The

magnitude of error here is b = (0,0,&3,Z>4)the perpendicular to the columns. The best

solution now is attained when we solve the first two equations. Since the last two

equations indicate 0 = b2 and 0 = b4, the error in those equations cannot be reduced but

the error in the first two will be zero.

<*l 0 0 0"

0 Ö-2 0 0

0 0 0 0

0 0 0 0_

Ax = p is

0 0 0" Xi bi

^2 0 0 x2 b2

0 0 0 Xi 0

0 0 0_ _XA_ 0_

(8)

20

Now the challenge, the dependent columns imply x is not unique! The first two

components are — and —, but x3 andx4 are completely arbitrary. Now apply the

minimum length criteria and see that these arbitrary components must be identically zero

to attain the best approximation.

That is, x =

\-
0-1

h

°2
0

_ 0

1

= 0 —

0

0

0

0

0 0
h

0 0 b2

0 0
IA

0 0_

(9)

The minimum length solution to Ax = p is, x+ , Strang [3].Again, the useful result is

specifically the equation that reveals x+ . This process displays the matrix, which yields

the desired result,

7/A =

CT1 0 0 0

0 <*2 0 0

0 0 0 0

0 0 0 0

then A+ =

cr.

0 —

0

0

0-2

0

0

0 0

0 0

0 0

0 0_

and x+=A+b =
0-2
0

0

(10)

21

A+ is referred to as the pseudoinverse and is the matrix which provides for solution to the

nearly singular system of Ax = b , Strang, [3].

This entire process has one sticking point. S+ is the pseudoinverse described

earlier. Now, the magnitude of rounding error in applying the inverse process is limited to

the sum of the errors when inverting the individual diagonal elements, cr . Each ai is the

square root of each nonzero eigenvalue Xi from both AAT and ATA .Now, the fine

point, what happens when cr. is sufficiently small to induce a divide by zero condition

when taking the pseudoinverse? The reciprocal of cr. is set to to zero by the code. Press,

et. al., [7], denote this procedure as editing the singular values. The logic is sound.

Recall the original formulation of the linear system. When redundant solutions (singular

conditions) are encountered as a result of variable correlation, the matrix is unable to

distinguish between the different basis functions and the associated distribution of the

input data. By setting the reciprocal of any sufficiently close to zero singular value to

zero, we effectively add. a zero multiple to the fitting parameters as opposed to some large

combination of the basis functions that are degenerate to the best fit, [7]. Further, if any

nonzero singular value is very small, its reciprocal should also be set to zero. This term is

most likely residual from rounding error and detracts from the optimal solution.

A rule for determining the editing tolerance of singular values is given by Press,

et. al., [7] as follows. Set to zero any singular value, cr. when,

22

The ratio < Ns

where N is the column length dimension and s is the machine precision.

Consider the following example least squares problem which illustrates the

mathematical principles of the algorithm. In this example A is assumed symmetric on

input just as in the Differential Correction form.

Let A =

3 -2 2' 1

-2 4 0 and b= 1

2 0 2 1

where

17 -14 10

ATA = -14 20 -4

10 -4 8

The eigenvalues

T,

X =36=6W =6
i i

A A - X\ are X = 9=3 =>cx = 3
2 2

X =0=02=>a =0
3 3

whose corresponding eigenvectors are

v = — 1 3 >v =~r
T

1
"2 "

2
■V==J

1

2j -2

Now A = UXV'or AV= U£ so

23

1 A l A u =—Av , u =—Av
i a > 2 <T 2

1 2

u

3-2 2

-2 4 0

2 0 2

|"2"
1 1

"12"
i

2

-2
3~18

12
~3

-2

[1 _ L6J L[J
Similarly

u =-
2

-2 2

4 0

0 2

IT
1 1

"3"
l
T

2
~3 ~9

3
3

2

L2. L6J 2

Now for the zero singular value we must solve the homogeneous problem

A ru = 0 for u.

3 -2 2 o"
-2 4 0 0 ->

2 0 2 0

1 =1
3

0 1

0 0

2

3 0
1

0
2
0 0

M- Z5 arbitrary

but, u =—u and u =-u
2 2 3 ! 3

50,

' -1 r 2]
U =«-,

3 J

1

2

_ 1
~3

i

1 -2
L J

Now lets refit the components.

24

T

6 0 0 V
i

u u u 0 3 0 T
V

1 1 2 3J 2

0 n 0 „T
V

3_

A = U£Vr

This is simply the sum of rank one matrices.

Now,

6u 3u 0
1 1 2

6u vr 3u vr 0vr

11 2 2 3

r — L ~ J.

" 2 -1"
3 3

-2 -2 6 0

3 3 0 3
1 -2

. 3 3 .

2 -2 1

3 3 3
-1 -2 -2

Now for the least squares piece.

Ax=b and A = UEVr so SVrx = ifb or x = VS_1Urb

S ' is the pseuodoinverse. Its structure was detailed earlier.

Now applying equation (8) to the original right hand side yields,

x =

"i o r
9 9

"2"

PI 9

o 1 I
9 9

1 =
1
3

1 1 1 1 7
.9 9 6. .18.

(11)

This is the least squares solution of minimal length.

Now the test, if x is orthogonal to N(AT), i.e., really the minimal length solution

and u3 is an element ofN(AT) then orthogonality demands that their dot product equal

zero.

25

x.u3 =

"2" " 2 "
9 3
1 1
3 3
7 -2

.18. _ 3 .

54 54 54

This example is easily extended to matrices of greater dimension.

26

IV. COMPARISON OF METHODS

A. GENERAL

The procedures used for computational comparison were NAVSPACECOMs

algorithms AMA03, AMA04, and AMA06 coupled with a process driver program and the

standard SVD algorithms as taken from Numerical Recipes by Press, et. al., [7]. During

research of the actual NAVSPACECOM code, it was found that Numerical Recipes was

referenced repeatedly throughout. This observation set the precedence for applying the

basic SVD codes of Numerical Recipes for computational analysis. This common ground

should serve to standardize any resulting code development.

It should be noted that throughout chapter 15, Numerical Recipes [7] the SVD is

recommended for least squares problems. Citing the following, "...solution of a least

squares problem directly from the normal equations is rather susceptible to roundoff

error." And, "In some applications, the normal equations are perfectly acceptable for

linear least squares problems. However, in many cases the normal equations are very close

to singular." The authors detail with significant correlation the precise difficulties that

generally arise in Differential Correction. They go on further detailing the exact

complication the routine AMA06 attempts to eliminate. The following excerpt from

Numerical Recipes sums up the exact nature of this entire analysis:

27

A zero pivot element may be encountered during the solution of the normal
equations, with Gauss-Jordan, in which you get no solution at all. Or, a very small pivot
may occur in which case you typically get fitted parameters ak with very large

magnitudes that are delicately balanced to cancel out almost precisely when the fitted
function is evaluated.

Why does this commonly occur? The reason is that, data do not clearly
distinguish between two or more basis functions provided. If two such functions or two
different combinations of functions happen to fit the data equally well - or badly - then
the matrix A, is unable to distinguish between them and becomes singular. There is
irony in the fact that least squares problems are both overdetermined (number of data
points greater than the number of parameters) and underdetermined (ambiguous
combinations of parameters exist). The ambiguities can be extremely hard to notice a
priori in complicated problems.

The SVD gives exactly what we need. In the overdetermined system SYD
produces a solution that is the best approximation in the least squares sense. In the case
of the underdetermined system, SVD produces a solution whose values (the ak 's) are

the smallest in the least squares sense also what we want. When some combination of
the basis functions is irrelevant to the fit, that combination is driven down to a small,
innocuous value, rather than pushed up to delicately canceling infinities.

B. SENSITIVITY ANALYSIS

The following sections present information that details the inner workings of the

individual numerical solvers. The concept to focus on deals with the aspect of matrix

sensitivity. The following simplified example details the problem explicitly (see Nyhoff

[16]).

Ax = b is
2 6

2 6.0000003

8

8.0000003

The solution is obviously x = Now perturb the right hand side very slightly.

28

Ax = b* is
2 6
2 6.0000003

8
7.9999994

Now the not so obvious solution is x =
10
-2

, where the very small perturbation in the

right hand side has altered the solution on the order of 107 times the constant term of the

second equation.

In performing rounding error analysis, we note that computers operate in floating

point arithmetic. That is, they convert every problem into a "nearby" problem perform

calculations and then convert back the answer. The symbol s, called machine epsilon

refers to the computer's ability to distinguish between two consecutive binary

representations of actual input values. When the relative representation of two

consecutive numbers exceeds the computer's ability to distinguish between them,

(II a- b\<e) we say an underflow has occurred in the calculation sequence.

The following method, known as matrix perturbation theory, helps to analyze the

nature of error in order to minimize it through algorithm refinement. Errors are

accumulated primarily from two sources. First there may be measurement error contained

within the original input data, and second, the algorithm itself may cause error through its

internal approximations while processing calculations. For excellent derivations of the

most commonly required error measurement techniques, see Demmel [6].

29

The measure of the accumulated error is referred to as the condition number of a

matrix. Simply put, the condition number indicates the precise level of sensitivity a matrix

has relative to these types of very small perturbations.

To summarize, an example taken from Strang [3] is in order. It directly illustrates

the short fall in the present NAVSPACECOM code methodology of scaling the input

matrix by the value 25,000,000.

Begin by consider the linear system Ax = b, now perturb the right hand side by

8 b. These errors might have come from the observational data or roundoff. The change

is small but the direction of change can not be controlled. The solution is subsequently

changed from x to x + 8 x. Now our system has become A8x = <5b. We now must

estimate the resulting perturbation 8 x = A_1<5b. There will be a large change in the

solution when A-1 is large, i.e. A is nearly singular. Now consider our symmetric matrix

with positive eigenvalues where 0</l] <X2<---<Xn. Any vector <5b is a combination of

the corresponding unit eigenvectors xl,--,s.n. Let s indicate a very small change.

If <5b = £x, then 8x = —.

The error in |<5b| is amplified by —, which is the largest eigenvalue of A '. The

amplification is greatest when \ is close to zero. Thus nearly singular matrices are the

30

most sensitive. The serious drawback with this measure of sensitvity appears when scaling

is introduced. Multiplying the matrix by a large scalar also scales the eigenvalue by the

corresponding amount. This makes the matrix appear much less singular. This rescaling

can't however make an ill-conditioned matrix well. It is true Sx will be smaller by the

IN scale factor however so will the solution to x = A b. The relative error \-j- .stays the
INI

same. The factor ||x| in the denominator normalizes the problem against such trivial

rescaling. There is a corresponding normalization of |<5b|. The problem is to compare the

l&ll relative change with the relative error
x

At this point, I refer to the following theorem as taken from Strang, [3].

Theorem

For a positive definite matrix, the solution x= A-1b and the error Sx= X~x 5b always

satisfy,

II II ^ N J II« II «r m
x > iLJL and <5x <

K K

Therefore the relative error is bounded by

31

jNI^- IM
\ m

X X
The ratio c - —^ = —^^ is called the condition number of A.

This analysis can be applied to the example given previously.

C. ERROR ANALYSIS

The following analysis applies to the least squares system. The established error

bounds hold regardless of solution method. A fundamental rounding error analysis

follows directly from the previous sensitivity analysis. See Golub, [5] and Demmel, [6] for

very complete presentations of both rounding and backward error analysis

The tradition definition of a vector or matrix norm holds throughout the following

analysis. See Strang [3] as required. Where the symbol ||. | appears in equation form,

consistent use of the chosen norm is implied throughout. Condition number is as defined

previously.

Given the linear system Ax = b where r - b - Ax . Where A is nxn

nonsingular, x is the computed solution, and r is the residual. Letxe be the exact solution

and e the error.

Then r =b - Ax = Axe - Ax = A(xe - x)

32

or r - Ae

Given A nonsingular then e = A V. Taking consistent norms of the equations yields the

following inequalities.

\e\\< A"1 H and \\A\\\\e\\>\\r

Relating these inequalities bounds the error as follows,

A-'IH * HI * § (12)

Now the exact solutions form,

x, = A lb and Ax„ = b

Where

xl< A"1 b and A flxJ > b!

We can now bound the exact solution.

A"1 llbll > llxjl >

Now divide inequality (10) through by ||xj and form

33

A ' IHI IUI ||r|
 EJi > JUL >

Ax

Substituting llxj in the left denominator by f-\ and in the right denomination by
A

A x jlbl! the expression for relative error now becomes,

AilMI
A A"1 llllbll

(13)

Where TMT is the relative error.

Now recalling that the condition number of the matrix A can also be expressed as

cond(A) = A 111 All, which is required for analysis of methods that do not return

eignevalue information, equation (11) becomes,

f\u\\
cond(A)

KPV
>J-4r >

1 f\\j\\

xj cond(A) KAJ

This formulation is convenient in that it allows for testing of the maximum and

minimum associated errors for any given output as initiated by the condition of the matrix

system. For more specific information on relative error and on absolute error given

34

machine dependent performance information see Engeln-Mullges and Uhlig [7]. This

analysis can be applied to the given test matrices.

D. COMPUTATIONAL EFFICIENCY

Flops, or floating point operations, are the measure of algorithm efficiency. While

they do not necessarily indicate the actual processing time, as different computers do

internal processing differently, they do give an excellent measure of the magnitude of total

number of computer calculation required by an algorithm as related to the functional input.

In general, flop counts are obtained by summing the number of arithmetic

operations from the most deeply nested algorithm statements. As an example of the

accounting notice, a dot product operation of length n involves n multiplications and n

additions. It therefore requires 2n flops. For matrix multiplications, the general form is

C(iJ) = A(i,kyB(k,j) + C(i,j)

This process requires 2mnp flops where C e R"*", A eR"^, B e R**".

Applying the above flop counting procedure, the following flop count estimates

are given for each algorithm as related to the matrix dimension [5].

35

ALGORITHM FLOP COUNT

Gauss-Jordan
2 n>

mn H
3

SVD
(U,Z,V)

4m2n + Smn2 + 9«3

SVD

(E, V only)

Amn2 + 8«3

Minimum requirement for least squares

This does not take into account specialized storage techniques and factorizations

when dealing with specific subprocess forms that may be optimized. In this respect, these

estimates would be considered worst case. In some instances the total flop count of a

particular subform may be cut by nearly half the indicated estimate. While these methods

yield respectable approximations of the computational cost, they do not provide actual run

time analysis. Specific algorithms can be made extremely efficient when optimized for a

particular computer.

36

V. CONCLUSIONS

A. SUMMARY OF FINDINGS

Testing of the actual NAVSPACECOM code and the SVD code was

accomplished through PC based Digital Visual Fortran 6.0. All NAVSPACECOM source

code was compiled and linked using the visual Fortran development environment. As

noted earlier SVD source codes were adopted directly from Numerical Recipes [6].

Driver programs for both software suites were developed as adoptations of the LAPACK

[9] and Numerical Recipes source code for advanced linear algebra. Test matrices were

generated using MATLAB and placed in standard text format for file upload by the driver

programs. All Fortran source code was version 77. The computer system used was a

Micron, 300 MHz, Pentium PH.

The test matrices indicated at Appendices A and B were used to determine how

well the two routines compared when attempting to solve highly singular and known

singular input matrices. As expected, the NAVSPACECOM code returns the SING = 0

error and does not continue further. The SVD algorithm on the other hand returns.

Further, upon analysis of the factored structure, the reconstructed matrices are within one

order of magnitude of the original input. The differences are due to roundoff error.

While the results presented in the output of the SVD algorithm may not look so

appealing at first glance, it is important to note,that the present Gauss-Jordan,

37

NAVSPACECOM routines return no output at all. This is much more encouraging. As a

minimum, even with the ridiculously singular nearly impossible input matrices, the SVD

routine successfully returned the best approximation as the desired solution. At this point

the differential correction subroutine now possesses an excellent starting point to continue

processing this observational input set. The nonlinear method may then still converge.

Had the NAVSPACECOM routine been allowed to process this set, the entire set would

have been discarded based solely on the coincidental fact that the input matrix derivation is

singular beyond the computer's ability to distinguish otherwise. The macro effect of this

NAVSPACECOM code shortfall is that potentially accurately derived observational data

is now discarded. This will certainly effect the long-term distribution of the accumulated

error in the orbital element set.

B. RECOMMENDATIONS

The potential for improvement in NAVSPACECOMs differential correction

process through integration of an SVD algorithm which replace existing subroutines

AMA03, AMA04, and AMA06 exists. The only way to verify the magnitude of

improvement, however, is to implement a test routine. The evidence presented herein

indicates that further study should be pursued.

C. CONCLUSION

The results of this study are not all inclusive. Only the worst possible input matrix

conditions were modeled. The frequency of occurrence of this type of input would

38

certainly have to be taken into consideration when deciding whether to upgrade the

present process. Differential Correction involves highly complex series of numerical

routines each with its own influence on the over all solution process. My findings indicate

that some improvement may occur through reduced processing time and the numerical

error of the actual values returned in the update state vectors. Additionally, it is worth

pointing out that many modern statistical regression-fitting packages have begun to use

more sophisticated linear algebra solvers for similar reasons as those addressed herein.

While at best the SVD algorithm is approximately 24 times more computationally

expensive in flops, it has the advantage of not requiring cyclic preconditioning to start the

solution process. The present NAVSPACECOM routine has the potential to cycle for

significant periods prior to achieving SING = 0 stop criteria. If significant numbers of

orbital element sets cause the AMA06 routine to process several times through before

either failing or calling the solver, the relative difference in run time between the two

methods may be very small. This aspect of the study will require actually run time

information to determine the flop count delta.

SVD solutions exhibit less error in each iterate as a result of their "best

approximation ". It is possible that over time, the resulting thorough evaluation of the

observational data by an SVD synthesizing algorithm could effectively decrease the error

in actual known position information as measured by the difference in the orbital element

set and the corresponding test data.

39

40

APPENDIX A

Test Case 1. Singular A Matrix

Highly singular A matrix: col(4) = (col(l)+col(3))/2 and col(8) = (col(2)+col(7))/2

Constructed random uniform (0,1)

Matrix A:

0.9688 0.1310 0.5620 0.7654 0.5979 0.0631 0.7666 0.4488

0.3557 0.9408 0.3193 0.3375 0.9492 0.2642 0.6661 0.8035

0.0490 0.7019 0.3749 0.2120 0.2888 0.9995 0.1309 0.4164

0.7553 0.8477 0.8678 0.8116 0.8888 0.2120 0.0954 0.4715

0.8948 0.2093 0.3722 0.6335 0.1016 0.4984 0.0149 0.1121

0.2861 0.4551 0.0737 0.1799 0.0653 0.2905 0.2882 0.3716

0.2512 0.0811 0.1998 0.2255 0.2343 0.6728 0.8167 0.4489

0.9327 0.8511 0.0495 0.4911 0.9331 0.9580 0.9855 0.9183

Symmetric, nxn matrix P = ATA.

3.4538 2.2680 1.7824 2.6181 2.6412 1.9559 2.2782 2.2731

2.2680 3.0953 1.5425 1.9052 2.7916 2.2445 1.9391 2.5172

1.7824 1.5425 1.4978 1.6401 1.6543 1.0673 1.0142 1.2783

41

2.6181 1.9052 1.6401 2.1291 2.1478 1.5116 1.6462 1.7757

2.6412 2.7916 1.6543 2.1478 3.0720 1.8867 2.3445 2.5680

1.9559 2.2445 1.0673 1.5116 1.8867 2.8209 1.9602 2.1023

2:2782 1.9391 1.0142 1.6462 2.3445 1.9602 2.7791 2.3591

2.2731 2.5172 1.2783 1.7757 2.5680 2.1023 2.3591 2.4382

Decomposition Matrices:

Matrix U

-0.405972 0.466532 -0.366483 0.180020 -0.532409 -0.026839 -0.006785 0.408157

-0.387027 -0.208141 0.614596 -0.035119 -0.301571 -0.411911 0.408982 0.006625

-0.238695 0.389374 0.258549 0.159762 0.718607 -0.126578 -0.006750 0.408139

-0.322333 0.427960 -0.053982 0.169871 0.093150 -0.075934 0.013911 -0.816422

-0.404391 0.039450 0.240801 -0.441264 -0.010121 0.762960 -0.001406 0.000463

-0.326910 -0.511282 -0.089709 0.724015 0.092756 0.301448 -0.000586 0.000171

-0.346071 -0.284110 -0.593342 -0.385717 0.303011 -0.199784 0.408545 0.006797

-0.366547 -0.246130 0.010611 -0.210450 0.000580 -0.308105 -0.815805 -0.013969

Diagonal of Matrix E

16.942978 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Matrix V-Transpose

42

-0.405972 -0.387027 -0.238695 -0.322333 -0.404391 -0.326910 -0.346070 -0.366547

0.467637 -0.210013 0.388574 0.428113 0.038740 -0.511046 -0.282277 -0.246149

-0.370840 0.614798 0.254242 -0.058314 0.255496 -0.115354 -0.581027 0.016870

0.169917 -0.013430 0.165458 0.167672 -0.432943 0.720162 -0.406542 -0.210019

-0.575737 -0.269208 0.669202 0.201179 -0.065735 0.073310 0.312403 0.021403

0.261994 -0.244425 0.394398 -0.727229 0.369304 0.160414 -0.054058 -0.148875

-0.223596 -0.360038 -0.310865 0.334620 0.664486 0.262515 -0.175497 -0.265547

0.000238 -0.407559 0.000561 -0.000351 -0.001333 -0.000496 -0.407884 0.817022

Check product against original matrix:

Original P Matrix:

3.453800 2.268000 1.782400 2.618100 2.641200 1.955900 2.278200 2.273100

2.268000 3.095300 1.542500 1.905200 2.791600 2.244500 1.939100 2.517200

1.782400 1.542500 1.497800 1.640100 1.654300 1.067300 1.014200 1.278300

2.618100 1.905200 1.640100 2.129100 2.147800 1.511600 1.646200 1.775700

2.641200 2.791600 1.654300 2.147800 3.072000 1.886700 2.344500 2.568000

1.955900 2.244500 1.067300 1.511600 1.886700 2.820900 1.960200 2.102300

2.278200 1.939100 1.014200 1.646200 2.344500 1.960200 2.779100 2.359100

2.273100 2.517200 1.278300 1.775700 2.568000 2.102300 2.359100 2.438200

Product Matrix = U*E*(V-Transpose):

43

2.792422 2.662113 1.641832 2.217128 2.781547 2.248604 2.380400 2.521245 .

2.662113 2.537884 1.565216 2.113665 2.651745 2.143672 2.269318 2.403590

1.641832 1.565216 0.965332 1.303582 1.635438 1.322089 1.399580 1.482391

2.217128 2.113665 1.303582 1.760356 2.208493 1.785347 1.889991 2.001818

2.781547 2.651745 1.635438 2.208493 2.770714 2.239847 2.371130 2.511426

2.248604 2.143672 1.322089 1.785347 2.239847 1.810694 1.916823 2.030238

2.380401 2.269319 1.399580 1.889991 2.371130 1.916823 2.029173 2.149235

2.521245 2.403590 1.482391 2.001818 2.511426 2.030238 2.149235 2.276402

44

APPENDIXE

Test Case 2. Extreme Singularity

Singular P matrix: col(l) = col(2)+col(3) + ... + col(8)

1.000000 0.900000 0.090000 0.009000 0.000900 0.000090 0.000009 0.000001

0.900000 0.900000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.090000 0.000000 0.090000 Ö.000000 0.000000 0.000000 0.000000 0.000000

0.009000 0.000000 0.000000 0.009000 0.000000 0.000000 0.000000 0.000000

0.000900 0.000000 0.000000 0.000000 0.000900 0.000000 0.000000 0.000000

0.000090 0.000000 0.000000 0.000000 0.000000 0.000090 0.000000 0.000000

0.000009 0.000000 0.000000 0.000000 0.000000 0.000000 0.000009 0.000000

0.000001 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001

Decomposition Matrices:

Matrix U

-0.726830 -0.298545 0.377237 0.221507 -0.175290 0.150237 -0.127672 0.348738

-0.685806 0.302705 -0.443863 -0.223180 0.175290 -0.150237 0.127672 -0.348738

-0.037087 0.334128 0.811978 -0.190945 0.175288 -0.150237 0.127672 -0.348738

-0.003546 -0.836417 0.031208 -0.329137 0.174926 -0.150235 0.127672 -0.348738

-0.000353 -0.089017 -0.019792 0.864991 0.288233 -0.149928 0.127670 -0.348738

45

-0.000035 -0.008940 -0.002062 0.089682 -0.886388 -0.261431 0.127375 -0.348738

-0.000004 -0.000894 -0.000207 0.008994 -0.091411 0.899086 0.248332 -0.348622

0.000000 -0.000099 -0.000023 0.001000 -0.010180 0.102642 -0.916846 -0.385685

Diagonal of Matrix £

1.860190 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Matrix V-Transpose

-0.676744 -0.731343 -0.084492 -0.003917 -0.000497 -0.000049 -0.000005 -0.000001

0.634569 -0.521247 -0.570616 -0.004328 -0.001723 -0.000168 -0.000017 -0.000002

0.187067 -0.224736 0.406687 0.865145 0.024989 0.002324 0.000231 0.000026

0.322910 -0.377922 0.708234 -0.499791 -0.038919 -0.001936 -0.000172 -0.000019

0.008663 -0.010371 0.016396 -0.041196 0.998458 0.030457 0.002268 0.000243

0.000000 0.000017 0.000174 0.001730 0.030609 -0.999175 -0.026540 -0.002122

0.000000 -0.000001 -0.000015 -0.000147 -0.001470 -0.026647 0.999247 0.028168

0.000000 0.000000 0.000001 0.000014 0.000138 0.001378 0.028215 -0.999601

Check product against original matrix:

Original Matrix P:

1.000000 0.900000 0.090000 0.009000 0.000900 0.000090 0.000009 0.000001

0.900000 0.900000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.090000 0.000000 0.090000 0.000000 0.000000 0.000000 0.000000 0.000000

0.009000 0.000000 0.000000 0.009000 0.000000 0.000000 0.000000 0.000000

46

0.000900 0.000000 0.000000 0.000000 0.000900 0.000000 0.000000 0.000000

0.000090 0.000000 0.000000 0.000000 0.000000 0.000090 0.000000 0.000000

0.000009 0.000000 0.000000 0.000000 0.000000 0.000000 0.000009 0.000000

0.000001 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001

Product U*£*(V-Transpose):

0.914987 0.988808 0.114237 0.005295 0.000672 0.000067 0.000007 0.000001

0.863342 0.932996 0.107789 0.004997 0.000634 0.000063 0.000006 0.000001

0.046687 0.050454 0.005829 0.000270 0.000034 0.000003 0.000000 0.000000

0.004464 0.004824 0.000557 0.000026 0.000003 0.000000 0.000000 0.000000

0.000444 0.000480 0.000055 0.000003 0.000000 0.000000 0.000000 0.000000

0.000044 0.000048 0.000006 0.000000 0.000000 0.000000 0.000000 0.000000

0.000004 0.000005 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

47

48

REFERENCES

[1] Vallado, D., Fundamentals of Astrodynamics & Applications, McGraw Hill, 1997.

[2] Danielson, D. A., and Canright, D., Documentation of the Naval Space Command
Differential Correction Process, NPS Technical Report, in preparation.

[3] Strang, G, Linear Algebra and its Applications, third edition, Harcourt Brace
Jovanovich, 1976.

[4] Goulib, G.H., and Van Loan, C.F, Matrix Computations, third edition, Johns
Hopkins University Press, 1996.

[5] Demmel, J. W., Applied Numerical Linear Algebra, Society for Industrial and
Applied Mathematics, Philadelphia, 1997.

[6] Press, W.H., et. al., Numerical Recipes in Fortran, second edition, Cambridge
University Press, 1992.

[7] Engeln-Mullges, G. and Uhlig, F., Nnumerical Algorithms with Fortran, Springer-
Verlag, Berlin, 1996.

[8] Nyhoff, L. R. and Leestma, S. C, Fortran 90 for Engineers and Scientists,
PrenticeHall, New Jersey, 1997.

[9] Anderson, E., Bai, Z., and Van Loan, C. F., LAPACK User's Guide, Society for
Industrial and Applied Mathematics, Philadelphia, 1992.

49

50

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvior, Virginia 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5000

3. Dr. Paul Schumacher : 1
Naval Space Command
5280 Forth Street
Dahlgreen, Virginia 22448-5000

4. Lt. Col. David J. Vallado 1
HQ U.S. Space Command/AN
250 S. Peterson BLVD, Ste. 116
Peterson AFB, Colorado 80914-3180

5. Chairman Michael A. Morgan 2
Code MA/Mw
Naval Postgraduate School
Monterey, California 93943-5101

6. Professor Don Danielson 5
Code MA/Dd
Naval Postgraduate School
Monterey, California 93 943 -5101

7. Professor David Canright 1
Code MA/Ca
Naval Postgraduate School
Monterey, California 93943-5101

8. Capt. Patrick M. Marshall 1
4027 Prescott Dr.
Martinez, Georgia 30907

51

